

Proceedings of the Second International Workshop On Agent-Oriented
Software Engineering (AOSE-2001), Montreal, Canada, May 29th 2001.

1

Determining When to Use an Agent-Oriented Software
Engineering Paradigm

Scott A. O’Malley1 and Scott A. DeLoach2

1Department of Electrical and Computer Engineering, Air Force Institute of Technology
Wright-Patterson Air Force Base, Ohio 45433-7765

omalleys@stratcom.mil
2Department of Computing and Information Sciences, Kansas State University

212 Nichols Hall, Manhattan, KS 66506
sdeloach@cis.ksu.edu

Abstract. With the emergence of agent-oriented software engineering
techniques, software engineers have a new way of conceptualizing complex
distributed software requirements. To help determine the most appropriate
software engineering methodology, a set of defining criteria is required. In this
paper, we describe out approach to determining these criteria, as well as a
technique to assist software engineers with the selection of a software
engineering methodology based on those criteria.

1 Introduction

Software engineers have a number of options when it comes to developing solutions
for complex, distributed software requirements. One emerging technique is the
development of multiagent systems. There are a number of reasons a software
developer may consider a multiagent system. In particular, multiagent systems can
provide benefits such as processing speed-up, reduced communication bandwidth,
and increased reliability [10]. However, the academic community, as well as
industry, is still trying to determine which problems call for a multiagent approach [8,
11].

Once a designer has made the decision to use a multiagent design, a number of
methodologies exist for building multiagent systems [2, 3, 4, 7, 14, 15, 19]. The
methodologies range from extensions of existing object-oriented methodologies to
new agent-oriented techniques, which offer a new perspective to developing
multiagent systems by increasing the level of abstraction the developer uses to
analyze and design the system. As agent-oriented software engineering techniques
are becoming more popular, software engineers must select the particular approach
that is best suited for the problem they are solving.

Our research at the Air Force Institute of Technology has focused on providing
software engineers and managers with a decision-making framework to determine an
appropriate methodology when faced with a set of viable software engineering
methodology alternatives [12]. This paper focuses on the method we applied for

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2001 2. REPORT TYPE

3. DATES COVERED
 00-00-2001 to 00-00-2001

4. TITLE AND SUBTITLE
Determining When to Use an Agent-Oriented Software Engineering
Paradigm

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology,Department of Electrical and
Computer Engineering,2950 P Street,Wright Patterson
AFB,OH,45433-7765

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

18

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

2

developing this framework. The primary challenge in developing this framework was
selecting a valid set of criteria upon which to base the decision.

The remainder of this section addresses other approaches to determining when an
agent-oriented approach is appropriate as well as techniques for classifying software
engineering methodologies. Section 2 describes the process we used to define the
criteria for the decision-making framework. Section 3 describes a survey that we
conducted in November and December 2000 to validate that criteria. Section 4
discusses the results of the survey. Section 5 provides the context in which we
applied the criteria to the decision-making framework. Finally, Section 6 presents our
conclusions.

1.1 Related Techniques

The strategy taken by Jennings and Wooldridge was to provide “intellectual
justification” [8] for the validity of the agent-oriented techniques. Their justification,
however, comes from a qualitative analysis of how well the technique addresses the
principles that allow software engineering techniques to deal with complex problems
proposed by Booch: abstraction, decomposition, and hierarchy [1, 8]. They leave
“understanding of the situations in which agent solutions are appropriate” as an
outstanding issue [8].

The European Institute for Research and Strategic Studies in Telecommunications
(EURESCOM) used a different strategy in 1999 when they began a project to explore
the use of agent technologies within the European telecommunications industry. One
of the project’s three objectives is to “define guidance for the identification of
application areas where an agent-based approach is better suited than other
approaches” [11]. The consortium produced the following five guidelines to help a
developer decide whether an agent-oriented approach is appropriate [11]:

1. An agent-oriented approach is beneficial in situations where complex/diverse
types of communication are required.

2. An agent-oriented approach is beneficial when the system must perform well in
situations where it is not practical/possible to specify its behavior on a case-by-
case basis.

3. An agent-oriented approach is beneficial in situations involving negotiation, co-
operation and competition among different entities.

4. An agent-oriented approach is beneficial when the system must act
autonomously.

5. An agent-oriented approach is beneficial when it is anticipated that the system
will be expanded, modified or when the system purpose is expected to change.

These guidelines are a good beginning in determining whether or not an agent-
oriented approach is well suited to a particular problem. However, based on these
guidelines alone, there is still no clear answer.

3

1.2 Software Engineering Methodology Classification

In 1988, the Software Engineering Institute (SEI) presented a set of guidelines for
assessing software development methods for real-time systems [17]. The guidelines
define a five-step process for evaluating different methodologies. These five steps
are:

1. Needs Analysis – Determine the important characteristics of the system to be
developed and how individual methods help developers deal with those
characteristics.

2. Constraint Identification – Identify the constraints imposed on the permitted
solutions and determine how individual methods help developers deal with
those constraints.

3. User Requirements – Determine the general usage characteristics of the
individual methods.

4. Management Issues – Determine the support provided by the method to those
who must manage the development process as well as the costs and benefits of
adopting and using the method.

5. Introduction Plan – Develop an understanding of the issues that the method does
not address and a plan to augment the method in those areas where it is
deficient.

Based on these steps, the consortium developed questions to help analyze
prospective methodologies. Some of the questions are meant to be rhetorical, while
others require an in-depth knowledge of the methodology and its representations. The
purpose of the questions is to make the assessor form an opinion regarding the
methodology; however, this process does not over-simplify the problem of selecting a
methodology. The questions do provide a framework to present a systematic
evaluation process.

We based our assessment process on SEI’s existing work in classifying software
methods, which includes three major areas of characterization [6]. The SEI process
involves determining what a method is, what a method does, and what issues the
method addresses. SEI’s three areas of characterization are:

• Technical Characteristics
• Management Characteristics
• Usage Characteristics

The Technical Characteristics look at classifying the technical characteristics of
the software development through the three stages of development (specification,
design, and implementation). The characteristics of the software problem dealt with
during the specification—or analysis—phase relate to the behavioral and functional
views of the problem. These views are carried through to the other stages of the
system development. During the design phase, the behavioral and functional views
are mapped into the behavioral and functional characteristics of the function.
Effective methods allow for smooth transition across these stages and allow the
ability to trace functional and behavioral characteristics through all stages of
development.

The next set of characteristics, Management, is important for considering the
support that a method provides to management when evaluating different methods.

4

The characterization should consider how well the method deals with typical
management and project issues such as estimating, planning and reviewing. The
characterization should also look at how the method is related to the needs and
processes that exist within the organization. Management practices are often a
difficult thing to change and identifying potential changes is an important factor in
adopting a new methodology [6].

The third set, Usage Characteristics, captures and describes the characteristics of
the methodology that will affect its use by an organization. These characteristics
include the basis for the methodology, the availability of training, and the availability
of tool support. This characterization is important in understanding the magnitude of
change involved with selection of a methodology.

2 Defining Decision Criteria

The challenge of selecting an appropriate methodology for a software development
project is in understanding the differences between the methodologies. The ability to
classify these methodologies is crucial to the understanding.

With the characteristics developed in [6] in mind, a set of criteria was developed.
For the framework defined in [12], we combined the management and usage
characteristics into one category, called Management Issues. The technical
characteristics of the methodology are captured in the Program Requirements
category. Each of these categories is discussed in detail below.

2.1 Management Issues

As indicated above, this category is closely related to the management and usage
characteristics as defined by [6]. Because of their universal applicability, many of the
issues addressed that pertain to this category are taken from the [17], as the
management and usage issues for selecting a software development method for real-
time systems are practical for any type of system. Below is the initial set of issues
selected for this category.

• Cost of Acquiring the Methodology (Meth)
• Cost of Acquiring Support Tools (Tool)
• Availability of Reusable Components (Reuse)
• Effects on Organizational Business Practices (Org)
• Compliance with Standards (Stan)
• Traceability of Changes (Chan)

The first two issues deal with costs involved with selecting the methodology.
Specifically, Cost of Acquiring the Methodology involves the costs associated with
adopting the methodology for use. Factors that influence this issue include the costs
incurred by sending personnel to available training, the purchase of reference
material, etc. Additionally, Cost of Acquiring Support Tools deals with the costs
incurred by purchasing tools that support the methodology. The tools include CASE

5

tools as well as programming development tools. Further, the cost of factors such as
additional hardware/software to operate the tools, maintenance costs for the tools, and
training, should be included.

Another issue that indirectly deals with cost is Availability of Reusable
Components. The incorporation of previously developed software into a new system
reduces the overall design, implementation, and testing phases for software
development. This category is used to measure the methodology’s ability to
incorporate predefined components into the system.

The final three issues reflect usage issues. First, Effects on Organizational
Business Practices measures the impact the adoption of a methodology will have on
the existing business practices of the organization. The business practice includes
ideas such as tracking development progress through milestones, reports, and
customer interactions. Next, Compliance with Standards is proposed to determine
how well an alternative is able to meet standards, whether local to the organization or
outside the organization such as national or international. Finally, the last issue in this
category, Traceability of Changes, measures the methodology’s support to trace
changes throughout the development lifecycle.

2.2 Project Requirements

The second category of criteria, Project Requirements, is related to the technical
characteristics. For this category, the criteria for real-time systems are not directly
relevant. In order to derive a set of criteria, we turned to current research and
identified a number of technical issues that relate to complex software systems [10,
16]. The issues selected are:

• Legacy System Integration (Leg)
• Distribution (Dis)
• Environment (Env)
• Dynamic System Structure (Struc)
• Interaction (Int)
• Scalability (Scal)
• Agility and Robustness (Agi)

The first three issues in this category relate to constraints of the problem. First,
Legacy System Integration is a measurement of the methodology’s ability to support
for the incorporation of previously developed systems, commonly called legacy
systems, with the new project requirement. Next, Distribution focuses on the ability
to support the modeling of distributed aspects of the problem. Distribution can occur
in the form of processors, resources, or information. Then, Environment measures the
methodology’s support of developing software systems for environments that have
heterogeneous hardware or software.

The next three issues in the category are Dynamic System Structure, Scalability,
and Agility and Robustness. Dynamic System Structure represents the methodology’s
ability to develop software capable of handling the introduction and removal of
system components in a manner that is not detrimental to the users of the system is
considered in this category. Scalability, similar to Dynamic System Structure,

6

measures the methodology’s ability to develop software capable of handling the
introduction and removal of system-level resources while minimizing the impact on
users. Last, Agility and Robustness focuses on the methodology’s ability to create
flexible software systems that will be resilient to dynamic changes in the
environment.

The final issue in the Project Requirements category is Interaction. This category
determines the methodology’s ability to handle the interaction between system-level
components as well as entities outside the system such as human users and other
systems.

3 Survey

After we selected the criteria above based on a number of literature sources [11, 16],
the compiled list was presented to software engineering professionals in academia,
industry, and government through a survey questionnaire on the Internet for
validation [12]. The purpose of the survey was to collect the opinions of software
engineering practitioners with regard to the importance of each of the evaluation
considerations to the overall decision.

In order to increase survey participation, an announcement was distributed to
software engineering professionals through electronic mail lists maintained by the
Object Management Group (OMG), University of Maryland Agent Web, and the
Software Engineering Research Network at the University of Calgary. In addition to
these broadcast mailings, announcements requesting participation were placed on
related, moderated newsgroups—comp.ai and comp.software-eng. Finally, requests
were sent directly to a number of respected academics, researchers, and industry
leaders.

3.1 Survey Analysis

The period for response collection was set at three weeks. Over that period, thirty-
three valid responses were collected. The survey began with some basic
demographic questions in order to develop a profile of the responders. Of the thirty-
three responders, twenty-two people indicated that they were associated with the
academic community, three responders were associated with government
organizations, and eight were associated with the industrial/commercial sector. As
for experience, seventeen indicated 1-5 years of experience in their field. Nine
responders categorized themselves as having 5-10 years of experience, and seven
responders indicated over 10 years of experience.

The survey also collected the opinions of the responders on the importance of the
evaluation consideration that were proposed for the decision as well as their thoughts
on the suggested factors, the relative weighting of the management and technical
categories, and additional possible factors. As for the criteria proposed, the
responders were asked to rate each on a scale of zero to four. Additionally,
responders could leave considerations “not rated”.

7

The set of scores each factor received indicates that the responders believed the
technical issues are more important that the management issues. Fig. 1 shows the
average scores each of the considerations received. Again, the responders felt more
emphasis should be placed on technical issues versus management issues.

A v e r a g e R a t i n g

2 . 0 0 0

2 . 2 0 0

2 . 4 0 0

2 . 6 0 0

2 . 8 0 0

3 . 0 0 0

3 . 2 0 0

3 . 4 0 0

M e th T o o l R e u s e O rg S t a n C h a n L e g D i s E n v S t r In t S c a A g i

E v a l u a t i o n C o n s i d e r a t i o n

R
at

in
g

M a n a g e m e n t I s s u e s T e c h n ic a l Is s u e s

Fig. 1. Average rating for proposed evaluation considerations

The survey asked whether basing the weights for the evaluation considerations
relative to only the other considerations in the same category was more appropriate
than determining weights relative to all of the considerations. The majority of
responses were to determine weights relative to all of the considerations. Most
responders did provide an opinion on the total weight each of the major issues. Like
the trend seen in Fig. 1, fourteen responders felt that the technical issues should
influence the decision more than the management issues. On the other hand, five
responders felt that the management issues should weigh more on the decision. Three
responders indicated that both sets of issues should have an equal weight. The
remaining responders did not specify a particular partitioning. Table 1 shows the data
gathered from this particular question.

Finally, the survey posed the question: what important factors are missing?
Several alternatives were suggested for the cost category. Responders indicated that
other factors would have more significance to the problem such as a cost/benefit ratio,
cost savings, and productivity gains, because the benefit of the new methodology, if it
were great enough, would mitigate any impact that the initial cost would have. Other
management factors suggested —availability of tools and experience base—would be
appropriate to evaluate the maturity of the methodology. Considerations in this area
included the availability of tools as opposed to just the cost, and the experience base
of the methodology. Though requested, no suggestions for technical issues were
submitted.

Based on the research and the survey results, several changes were made to the list
of proposed evaluation considerations. Similar categories, like Dynamic System
Structure and Scalability, were combined to form a single category, as were

8

Organizational Business Practices, Compliance with Standards, and Traceability of
Change; and the Cost of Acquiring the Methodology and Cost of Acquiring Support
Tools. Methodology Maturity was added to the list in order to capture that aspect in
the decision. The final list of issues is:

• Management Issues
• Cost of Acquiring Methodology and Tools
• Organizational Business Practices
• Availability of Reusable Components
• Methodology Maturity

• Project Requirements
• Legacy System Integration
• Distribution
• Environment
• Dynamic Structure and Scalability
• Agility and Robustness
• Interaction

Table 1. Partition weightings

Management
Issues

Technical Issues Number of
Responses

10% 90% 2
25% 75% 1
30% 70% 2
33% 66% 1
35% 65% 3
40% 60% 3
45% 55% 2
50% 50% 3
60% 40% 2
75% 25% 3

No Partition 11

4 Application of Criteria

Our research included the development of a decision-making process built upon a
decision analysis framework [12]. This section describes how the criteria specified
above are incorporated into the selected strategic decision-making technique.

The strategic decision-making technique selected for the problem of methodology
selection is Multiobjective Decision Analysis [9]. Multiobjective Decision Analysis
was selected as the underlying framework because (1) of its ability to handle multiple
criteria, (2) it is based on a mathematical framework, (3) it is a flexible technique, and
(4) it is a mature technique.

9

4.1 The Decision Analysis Tool

The first step in decision-making based on the Multiobjective Decision Analysis is the
development of a value hierarchy. A value hierarchy is tree-like structure used for
capturing evaluation considerations, objectives, and evaluation measures relevant to
the decision. Evaluation considerations are criteria that need to be taken into account
when evaluating alternatives. An objective is the preferred movement with respect to
an evaluation consideration. An evaluation measure is a scale for measuring the
degree of attainment of an objective.

For the methodology selection problem, the issues, described in Section 4, map
directly to evaluation considerations in the decision problem’s value hierarchy shown
in Fig. 2. The objectives of the evaluation considerations, with the exception of Cost
of Acquiring Methodology and Tools, are to maximize the rating of the
methodology’s ability to represent the issues. For Cost of Acquiring Methodology
and Tools, the objective is to minimize the real dollar cost involved with acquiring the
methodology and supporting tools.

In order to measure the evaluation considerations, a set of questions has been
developed for each. Like the questions developed for the selection of a methodology
for developing real-time systems, the questions are designed to measure the
methodology’s ability to represent the relevant issues [17]. Unlike the system of
questions in [17], the decision-maker is asked to rate each question on a scale of zero
to four. In order to capture the information, a series of worksheets have been created
in [12] that collect the data, as well as provide the decision-maker with guidelines for
rating each question. The purpose of the guidelines is to provide a standard for
decision-makers to use while evaluating a set of subjective questions.

The Multiobjective Decision Analysis technique provides the decision-maker with
a normalized score representing the fitness of an alternative with regard to the
problem. This score, called the multiobjective fitness value is the additive
combination of the product of the weight, w, and rating for each evaluation
consideration, v. Equation 1 is the multiobjective fitness function for the decision
analysis tool.

) () (= ∑

∀

X v w X V

i
i i i

int dss, ar, env, dis, ent, reuse, mat, bus, cost, where = i

(1)

Weights are used to capture the level of importance the decision-maker places on a
particular evaluation consideration. The weights make this technique flexible. The
weights of evaluation considerations that are not important to the decision can be set
to zero, effectively taking the evaluation consideration out of the decision.

4.2 Application of Decision Analysis Tool

The process of making the decision is captured in a decision analysis tool. This tool
is the encapsulation of several data gathering steps and algebraic calculations. The
process, itself, is defined by four steps:

10

What is a good
software engineering
method that my
organization can use to
reduce development
costs and produce
quality products?

Management
Issues

Project
Requirements

Enterprise Integration

Distribution

Environment

Dynamic Structure & Scalability

Interaction

Agility and Robustness

Cost of Acquiring
Methodology & Tool Support

Component Reuse

Organizational Business
Practices

Methodology Maturity

Fig. 2. Methodology selection value hierarchy

1. Weight the Evaluation Considerations
2. Rate the Relevant Evaluation Considerations
3. Calculate the Multiobjective Fitness Value
4. Determine the Best Alternative

Weighting the Evaluation Considerations involves determining which of the
evaluation considerations are important to the particular software requirements
problem that the decision-maker is trying to select a methodology. After determining
the relevant considerations, the decision-maker determines a raw weighting for each
consideration based on the relative importance each consideration has with regard to

11

the least important evaluation consideration. The raw weights are then normalized for
use in the decision analysis.

For example, one of the case studies evaluated in [12] was based on the system
requirements for a content search system [13]. The content search system is a
distributed software application in which the users of the system are able to search
data files throughout the users’ network for key words or phrases. Based on the
evaluation consideration in Fig. 2, each of the categories and the analysis decision
made as to whether or not the consideration is relevant is shown below.

− Cost of Acquiring Methodology and Support Tools – Relevant. The approach to
this problem is that the software engineer is part of an organization that is
looking to adopt the methodology and supporting tools.

− Organizational Business Practices – Relevant. Although the software engineer
is the only employee in the fledgling department, the engineer does have the
responsibility of providing project updates to other interested parties outside of
the department.

− Methodology Maturity – Relevant. The decision to change to a new
methodology will require some degree of evidence that it will produce quality
software.

− Integration of Reusable Components – Irrelevant. A library of reusable
components is not available to the software engineer.

− Legacy System Integration – Irrelevant. The system is not required to
incorporate any existing software systems.

− Distribution – Relevant. The users of the system will require access from
different nodes on the network. Likewise, the data that the users will require is
stored on many hard drives throughout the network.

− Environment – Relevant. The environment of the network is a mixture of Sun
Workstations running Solaris OS and Personal Computers running Windows
NT.

− Agility and Robustness – Relevant. The users of the system will expect
predictability and reliability.

− Dynamic Structure and Scalability – Relevant. The organization is growing and
as new employees are hired, the hardware systems they are given will need to be
linked to the software system for access and data storage.

− Interaction – Relevant. The system must provide an interface for the user to
submit requests.

After determining the relevance of each evaluation consideration, the decision-
maker specifies weights for each. The raw weight is based on the level of importance
each evaluation consideration has relative to the least important consideration. After
the raw, or relative, weighting is complete, the normalized weights can be calculated.
For this particular case study, the results of the relative weighting and normalization
are shown in Table 2, the details for the calculation can be found in [12].

Next, the decision-maker Rates the Relevant Evaluation Considerations for each of
the methodologies being considered. For each of the evaluation considerations
considered relevant in the Step 1, the decision-maker rates the consideration by
answering the respective set of questions developed during the research with respect
to each alternative [12].

12

Table 2. Content search weighting summary

Rank Evaluation
Consideration

Relative
Weight

Normalized
Weight

1 Cost 1 0.172
1 Dis 1 0.172
1 Env 1 0.172
1 Int 2 0.172
2 AR 1 0.086
2 DSS 1.25 0.086
3 Mat 1 0.069
3 Org 0.069

This research evaluated an object-oriented software engineering methodology

developed by Booch [1] and an agent-oriented software engineering methodology,
called Multiagent System Engineering (MaSE), developed at the Air Force Institute of
Technology [5] as alternatives for developing solutions to the content search problem.
The documentation of the ratings can be found in [12]. For each relevant evaluation
consideration, a single-dimensional value function gives the rating based on the input
from the user. Table 3 summarizes the ratings of each evaluation consideration for
the respective methodologies.

Table 3. Content search rating summary

Evaluation
Consideration

SDVF
Fitness –

MaSE

SDVF
Fitness –

Booch
Cost 0.937 0.591
Dis 0.750 0.500
Env 0.833 0.833
Int 0.500 0.833
AR 0.417 0.250

DSS 0.750 0.625
Mat 0.333 1.000
Org 0.679 0.714

After rating each set of questions, the decision-maker has the last information

needed to Calculate the Multiobjective Fitness Values. Using Equation 1, the weights
and ratings are combined to form a single fitness value for each alternative. In the
case of the evaluation considerations that were determined to be irrelevant, the term
can be dropped or a zero can be entered. An example of the calculation is shown
below for the MaSE alternative.

VMaSE(X) = wcostvcost(xcost) + worgvorg(xorg) + wmatvmat(xmat) + wdisvdis(xdis)
+ wenvvenv(xenv) + warvar(xar) + wdssvdss(xdss) + wintvint(xint)

 = 0.172 vcost(1690) + 0.069 vorg(19) + 0.069 vmat(4) + 0.172 vdis(9)
+ 0.172 venv(10) + 0.086 var(5) + 0.086 vdss(6) + 0.172 vint(6)

 = 0.161 + 0.047 + 0.023 + 0.129 + 0.143 + 0.036 + 0.065 + 0.086

 = 0.689

The summary of multiobjective fitness values (MFV) is shown below in Table 4.

13

Table 4. Content search MFV summary

Case Study MaSE MFV Booch
MFV

Content Search
System 0.689 0.668

With the multiobjective fitness values for each alternative, the decision-maker has

a quantified value to base the decision. For this example, the decision analysis tool
recommends MaSE over Booch. In cases where the results are close, there are a
number of techniques for evaluating the sensitivity of the decision based on the
weights assigned in step 1.

4.3 Sensitivity Analysis

The two factors that determine the value of the multiobjective are the weights
assigned to each evaluation consideration and the score the alternatives receive for
each evaluation consideration. Though the ratings of each of the focus points are
subjective, each rating is based on the assessor’s experience and we assume it is
accurate. However, because the weights are defined strictly on a perceived
importance of one evaluation consideration over another, we are wary of their
accuracy and subject them to sensitivity analysis. To give the assessor a feeling for
the definitiveness of the decision, we can perform sensitivity analyses on the
weightings of each evaluation consideration. We focus this analysis on the areas
where a slight change in an evaluation consideration’s weight could significantly
change the overall fitness score.

Using the Data Analyzer tool that we developed to work with the output of the
decision analysis tool, a full sensitivity analysis can be performed on the weights of
all of evaluation considerations. The analysis focuses on the most sensitive of the
considerations with regard to the original normalized weight by evaluating the fitness
of each methodology over a range of weights for a particular methodology. For our
case study, we calculated the entire range of possible weight, from 0 to 1. To ensure
that the total normalized weight remains 1, the other considerations (those not
currently being analyzed) are adjusted to be proportional to the total weight minus the
weight of the consideration being analyzed. We consider the final decision sensitive
if a small change to the weight – a change of 5% to 7% [9] – produces a change in the
final decision. We consider a recommendation is definitive when the percentage of
sensitive considerations is less than 33% [9].

Detecting sensitivity relies on the identification of critical points. A critical point
is where the weight for the particular consideration changes the decision analysis
tool’s preference. The sensitivity analysis chart for Methodology Maturity of our case
study is shown in Fig. 3. The analysis chart is annotated to highlight the critical
points. For example, this figure has three critical points. The first is when the weight
for Methodology Maturity is 0.098. When the weight is within the range 0 to 0.098,
the MaSE methodology has the highest multiobjective fitness value. The second
critical point, at 0.382, is the weight that the Yourdin methodology rates begins to rate
higher than MaSE, however, it is still less than the Booch methodology. The third

14

critical point, 1.000, is where the Booch and Yourdin methodologies intersect.
However, by setting the weight of Methodology Maturity to 1.000, it is the only factor
being taken into account.

MaSE
Booch
Yourdin

0.000

0.200

0.400

0.600

0.800

1.000

0 0.25 0.5 0.75 1

V
al

u
e

0.098

0.382

1.00

Fig. 3. Methodology maturity sensitivity analysis chart

The critical points and original weights for our case study are shown in Table 5.
For the considerations where there is no critical point, “-” is entered as the critical
point. Additionally, the amount of the change in weight needed to alter the final
decision is noted with changes less than and equal to 7% highlighted in bold font.

Table 5. Case study weights and critical point summary

Evaluation
Consideration

MaSE –
Booch
Critical
Point

MaSE –
Yourdin
Critical
Point

Booch –
Yourdin
Critical
Point

Original
Weight

Change
(+/-)

Cost 0.117 - - 0.172 0.056
Org 0.419 1.000 - 0.069 0.350
Dis 0.094 - - 0.172 0.078
Env 1.000 - - 0.172 0.828
AR - - - 0.086 -

DSS - - - 0.086 -
Int 0.223 1.000 - 0.172 0.051
Mat 0.098 0.382 1.000 0.069 0.029

Our case study was sensitive to three criteria out of six making the answer

produced non-definitive. While our decision analysis recommended MaSE, our the
sensitivity analysis indicates that if the user’s weighting preferences were slightly
different, the Booch methodology could easily win. In all likelihood, either
methodology would satisfy the user’s needs.

15

4.4 Validation of Decisions

The decision analysis tool was demonstrated on a number of example software
requirements in [12]. The challenge with validating the decision the tool returns is
that the decision is being made based on subjective criteria. As an example, the
software requirement for the content search was developed via the two rated
methodologies—MaSE and Booch.

During the development process, a set of metrics was collected. The metrics
collected focused on the productivity of the developer. They included labor hours
spent developing the analysis and design models and the implementation, the size of
the programs measured in lines of code and number of components, and the
complexity of the developed code. The time spent analyzing and designing the
systems were similar, but more time was spent on the object-oriented implementation.
The size of the agent-oriented code was roughly twice as large as the object-oriented
code. The data collected is shown in Table 6.

Table 6. Content search development metrics

Metric MaSE Approach Booch Approach
Modeling Effort –

Analysis
4.83 labor hours 4.53 labor hours

Modeling Effort – Design 2.17 labor hours 4.08 labor hours
Modeling Effort –

Implementation
8.17 labor hours 11.75 labor hours

Size – SLOC 1252 638
Size – Classes 20 11
Cyclomatic Complexity 74 6
Size/Effort Ratio 153.2 SLOC/labor hour 54.3 SLOC/labor hour

In addition to collecting the metrics, a questionnaire was distributed to a class of

software engineering graduate students. The purpose of the questionnaire was to
determine whether the details of the system’s requirements were identifiable within
the analysis and design models of the respective methodologies. The students
reviewing the agent-oriented analysis and design models scored higher than those
reviewing the object-oriented did. This corresponds with the decision analysis tool’s
determination that the agent-oriented methodology was more appropriate the
requirement [12].

The first set of questions the respondents answered was to their familiarity with
methodologies they were evaluating. Eight of the nine students reviewing the Booch
models indicated that they were familiar with the methodology, and five of those
indicated that they had developed systems using the methodology in the past. Only
six of ten students indicated that they were familiar with the MaSE methodology, and
of those, only five students had actually used the methodology for system
development. These results were expected since MaSE is a recently defined agent-
oriented methodology while the Booch methodology is much more mature. Asked to
identify other methodologies with which they are familiar, the students indicated
object-oriented techniques, functional decomposition techniques, and ad hoc methods
for developing software.

16

The next question was a general question about the respondents’ confidence that
they understood the models. Each was asked to rate his confidence on a scale of zero
to four, with four indicating the greatest confidence in understanding the system. On
the average, the understanding rating for the students evaluating the MaSE
methodology was 3.2. The rating was 3.125 for the students evaluating the Booch
methodology. Seven of the eight students reviewing the Booch methodology were
able to identify the correct statement of description for the system. Only two of the
ten students reviewing the MaSE methodology were able to select the correct
statement; the other eight students selected the “nearly” correct answer.

The next set of questions looked at a number of details in the models, including the
identification of legacy systems, reusable components, the network environment, and
interface issues. The students reviewing the Booch methodology were divided
equally with regard to identifying a legacy system. Because there was not a legacy
system incorporated in this system and the responses as to what the legacy system
could possibly be, the naming convention was likely the reason for the
misidentification. Only one student misidentified the legacy system in the set of
MaSE models.

Determining the network environment was the intention of several questions.
Identifying the configuration of the network the system was being designed for is
important information that needs to be communicated to the developers. These
questions measured the respondents’ ability to discover this environment information.
The group evaluating the MaSE example was able to more completely identify the
hardware and software system components in the models. With regard to the user
interface, both groups were able to identify the input and output of the systems as well
as the options.

Based on the scoring included next to each question on the questionnaire in [12],
the average scores are 25.5 for the MaSE group and 25.4 for the Booch group.
Furthermore, by considering the results for the students who were familiar and
experienced with the respective methodology, the average score for the MaSE group
was 27.2 and for the Booch group was 25.1.

The student responses pointed out positives and negatives associated with each
approach. However, the results of this experiment are consistent with the results
produced by our decision analysis tool.

5 Conclusions

The reasons for software engineering methodologies are clear: develop a high quality
software product at the least cost. When faced with the challenge of creating one of
these high quality/low cost products, it is necessary to use the methodology that best
fits the problem. The challenge is, “how do you decide what the best method is?”

The challenge becomes even greater as methodologies are developed that
specifically address new technologies, such as the development of multiagent
systems. Agent-oriented software engineering provides a different way of looking at
the same problem by raising the level of abstraction. The solution for this is to be
able to classify different software engineering methodologies quantitatively based on
the software requirement at hand.

17

The challenge in this is developing a set of criteria that represents the problem
space. To generalize this problem space, we developed a set of criteria from current
software engineering literature. To ensure that others agree with our criteria, we
invited various members of the software engineering community to participate in a
survey. Based on the results of this survey, we adjusted the criteria to include
additional factors that we missed as well as to remove criteria the community did not
find important.

The method provides the user with the ability to determine the best methodology
for a particular problem. There is still an outstanding question of when to use
multiagent systems. The challenge with this is that there does not exist a large body
of evidence to support the hypotheses that multiagent systems are superior to
traditional systems. Because there is currently so much research focused on
developing new methodologies, more multiagent systems will inevitably be created,
which, in turn, will create a larger body of data to compare with traditional systems.

6 Acknowledgements

This work was performed while both authors were at the Air Force Institute of
Technology and was supported by the Air Force Office of Scientific Research. The
views expressed in this article are those of the authors and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the US
Government.

References

[1] Booch, G.: Object-Oriented Analysis and Design with Applications. The
Benjamin/Cummings Publishing Company, Redwood City, CA (1994)

[2] Brauer, W., Nickles, M., Robatsos, M., Weiss, G., Lorentzen, K.: Expectation-Oriented
Analysis and Design. In this volume (2001)

[3] Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Modeling Early
Requirements in Tropos; a Transformation Based Approach. In this volume (2001)

[4] Caire, G., Garigo, F. Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P., Stark, J.,
Evans, R., Massonet, P.: Agent Oriented Analysis Using MESSAGE/UML. In this
volume (2001)

[5] DeLoach, S. A., Wood, M., Sparkman, C.: Multiagent Systems Engineering. To appear in
the Intl. J. on Software Engineering and Knowledge Engineering (2001)

[6] Firth, R., et al.: A Classification Scheme for Software Development Methods. Software
Engineering Institute Technical Report 87-TR-41. Software Engineering Institute,
Carnegie-Mellon University, Pittsburgh, PA (1987)

[7] Iglesias, C.A., Garijo, M., Gonzalez, J.C.: A Survey of Agent-Oriented Methodologies in
Intelligent Agents V – Proceedings of the Fifth International Workshop on Agent
Theories, Architectures, and Languages (ATAL-98), Lecture Notes in Artificial
Intelligence, Vol. 1555. Springer-Verlag, Berlin Heidelberg New York (1998)

[8] Jennings, N.R., and Wooldridge, M.J.: Agent-Oriented Software Engineering. To appear
in Bradshaw, J. (ed.): Handbook of Agent Technology. AAI/MIT Press (2001)

18

[9] Kirkwood, C. W.: Strategic Decision Making: Multiobjective Decision Analysis with
Spreadsheets. Wadsworth Publishing, Belmont, California (1997)

[10] Lesser, V.R.: Cooperative Multiagent Systems: A Personal View of the State of the Art.
IEEE Trans. on Knowledge and Data Engineering. 11 (1) (1999) 133-142

[11] MESSAGE: Methodology for Engineering Systems of Software Agents – Initial
Methodology. EURESCOM Participants in Project P907-GI (2000)

[12] O’Malley, S.A.: Selecting a Software Engineering Methodology Using Multiobjective
Decision Analysis, AFIT/GCS/ENG/01M-08. School of Engineering and Management,
Air Force Institute of Technology (AU), Wright-Patterson AFB OH (2001)

[13] O’Malley, S.A., Self A., and DeLoach, S.A.: Comparing Performance of Static versus
Mobile Multiagent Systems. Proceedings of the National Aerospace and Electronics
Conference. IEEE (2000) 282-289

[14] Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design of Agent-
Based Systems. In Ciancarini, P., Wooldridge, M. (eds.): Agent-Oriented Software
Engineering: First International Workshop, AOSE 2000. Lecture Notes in Artificial
Intelligence, Vol. 1957. Springer-Verlag, Berlin Heidelberg (2001) 185-194

[15] Rana, O.: A Modelling Approach for Agent Based Systems Design. In Ciancarini, P.,
Wooldridge, M. (eds.): Agent-Oriented Software Engineering: First International
Workshop, AOSE 2000. Lecture Notes in Artificial Intelligence, Vol. 1957. Springer-
Verlag, Berlin Heidelberg (2001) 195-206

[16] Shen, W. and Norrie, D.: Agent-Based Systems for Intelligent Manufacturing: A State-of
the-Art Survey. Intl. J. Knowledge and Information Systems. 1 (2) (1999) 129-156

[17] Wood, B., Pethia, R., Gold, L.R., and Firth, R.: A Guide to the Assessment of Software
Development Methods. Software Engineering Institute Technical Report 88-TR-8.
Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, PA (1988)

[18] Wooldridge, M.J.: Intelligent Agents. In Gerhard Weiss (ed.): Multiagent Systems: A
Modern Approach to Distributed Artificial Intelligence. MIT Press, Cambridge,
Massachusetts (1999)

[19] Zhu, H.: A Formal Specification Language for MAS Engineering. In this volume (2001)

